Geometric configuration of Riemannian submanifolds of arbitrary codimension
نویسندگان
چکیده
منابع مشابه
Umbilicity of (Space-Like) Submanifolds of Pseudo-Riemannian Space Forms
We study umbilic (space-like) submanifolds of pseudo-Riemannian space forms, then define totally semi-umbilic space-like submanifold of pseudo Euclidean space and relate this notion to umbilicity. Finally we give characterization of total semi-umbilicity for space-like submanifolds contained in pseudo sphere or pseudo hyperbolic space or the light cone.A pseudo-Riemannian submanifold M in (a...
متن کاملA General Optimal Inequality for Arbitrary Riemannian Submanifolds
One of the most fundamental problems in submanifold theory is to establish simple relationships between intrinsic and extrinsic invariants of the submanifolds (cf. [6]). A general optimal inequality for submanifolds in Riemannian manifolds of constant sectional curvature was obtained in an earlier article [5]. In this article we extend this inequality to a general optimal inequality for arbitra...
متن کاملBoundedness for Codimension Two Submanifolds of Quadrics
It is proved that there are only finitely many families of codimension two subvarieties not of general type in Q6.
متن کاملWarped Product Submanifolds of Riemannian Product Manifolds
and Applied Analysis 3 where TX and NX are the tangential and normal components of FX, respectively, and for V ∈ T⊥M,
متن کاملSymmetric Submanifolds of Riemannian Symmetric Spaces
A symmetric space is a Riemannian manifold that is “symmetric” about each of its points: for each p ∈M there is an isometry σp of M such that (σp)∗ = −I on TpM . Symmetric spaces and their local versions were studied and classified by E.Cartan in the 1920’s. In 1980 D.Ferus [F2] introduced the concept of symmetric submanifolds of Euclidean space: A submanifold M of R is a symmetric submanifold ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry
سال: 2017
ISSN: 0047-2468,1420-8997
DOI: 10.1007/s00022-017-0374-2